LAJU PERTUMBUHAN SPESIFIK DAN TOTAL LIPID CHAETOCEROS CALCITRANS YANG DI INJEKSI DENGAN KONSENTRASI CO2 YANG BERBEDA
DOI:
https://doi.org/10.58487/akrabjuara.v6i4.2060Keywords:
Growth rate, Chaetoceros Calcitrans, CO2. concentrationAbstract
The microalgae Chaetoceros calcitrans can photosynthesize and grow rapidly. Carbon dioxide (CO2) is very important role in the process of photosynthesis. CO2 injection is required for use in photosynthesis, so it is expected to increase the specific growth rate and reduce greenhouse gases. This research was conducted using experimental laboratory methods, using 4 treatments, namely CO2 injection with concentrations of 10%, 20%, 30%, 40% and without CO2 injection (control) with 4 times variations. The highest specific growth rate occurred on the second day, namely the 10%, 20%, 30%, 40% and control treatments, respectively 0.90, 0.81, 0.78, 0.86 and 0.81 with a doubling time of 0, 77, 0.86, 0.89, 0.81 and 0.85. The highest total lipid obtained with the addition of 10% CO2 was 52.69 (dry weight) while the lowest was the control treatment (ambient air) which was 23.37 ( % dry weight), although the lipid results obtained were not directly proportional to the CO2 concentration and based on the ANOVA test followed by the 5% BNT test did not show a significant difference (p<0.05).
Downloads
References
activities in Chlorella sp. and
Nannochloropsissalina during lipid
and sugar synthesis in a lab-scale openpond simulating reactor. J.
Biotechnol.1:1-12
Boyd, C. E. 1982. Water Quality
Management for Pond Fish Culture
Development in Aquaculture and Fish
Science. Vol. 9 Elsevier Scintific Pub.
Comp.
Christi, Yusuf. 2007. Biodiesel from
Microalgae. iBiotechnology Advances.
Vol. 25, P. 294 – 306.
Chiu, S.-Y., Kao, C.-Y., Chen, C.-H., Kuan,
T.-C., Ong, S.-C., Lin, C.-S., 2008.
Reduction of CO2 by a high-density
culture of Chlorella sp. in a
semicontinuous photobioreactor.
Bioresour. Technol. 99 (9), 3389–3396.
Choudhary, P., Assemany, P.P., Naaz, F.,
Bhattacharya, A., Castro, J. de S.,
Couto, E. de A. do C., Calijuri, M.L.,
Pant, K.K.,Malik, A., 2020. A review of
biochemical and thermochemical energy
conversion routes of wastewater grown
algal biomass. Sci. Total Environ. 726,
137961.
https://doi.org/10.1016/j.scitotenv.2020.
137961.
Davis, R., Aden, A., Pienkos, P.T., 2011.
Techno-economic analysis of
autotrophic microalgae for fuel
production. Appl. Energy 88, 3524–
3531.
https://doi.org/10.1016/j.apenergy.2011.
04.018
.
de Morais, M.G., Costa, J.A.V., 2007.
Isolation and selection of microalgae
from coal fired thermoelectric power
plant for biofixation of carbon dioxide.
Energy Convers. Manage. 48 (7), 2169–
2173.
Feng, X., Yang, R., Zheng, X., & Zhang, F.
(2012). Identification of a novel nuclearlocalized adenylate kinase 6 from
Arabidopsis thaliana as an essential
stem growth factor. Plant Physiology
and Biochemistry, 61, 180–
186. doi:10.1016/j.plaphy.2012.10.002
Hirata, S., Hayashitani, M., Taya, M., Tone, S.
1996. Carbon dioxide fixation in batch
culture ofChlorella sp. using a
photobioreactior with a sunlightcollection device. Journal of
fermentation and bioengineering. 81(5),
470-472.
Jacob-Lopes, E., Scoparo, C.H,G., Lacerda,
L.M.C.F., Franco, T.T., 2009. Effect of
light cycles (night/day) on CO2 fixation
and biomass production by microalgae
in photobioreactors. Chem. Eng.
Process. 48, 306-310.
Jiang Y, Yoshida T, Quigg A. 2012.
Photosynthetic performance, lipid
production and biomass composition in
response to nitrogen limitation in
marine microalgae. Plant Physiol
Biochems. 54:70-77. doi.org/10.1016/
j.plaphy. 2012.02.012.
Kawaroe M., Prartono T., Sunuddin A.,
Wulan Sari D., dan Augustine D. 2010.
Mikroalga Potensi dan
Pemanfaatannya untuk Produksi Bio
Bahan Bakar. Bogor: IPB Press.
Kawaroe M, Hwangbo J, Augustine D, Putra
HA. 2015a. Comparison of density
specific growth rate, biomass weight, and doubling time of microalgae
Nannochloropsis sp. cultivated in open
raceway pond and photobioreactor.
AACCL Bioflux. 8(5) :740-750.
Lee, J. Y. 2009. Comparison of Several
Methods for Effective Lipid Ectraction
from Microalgae. Bioresource
Technology 101: S75-S77.
Lorenz, R.T and G.R. Cysewski. 2003.
Commercial Potential for
Haematococcus Microalga as A
Natural of Astaxanthin. Trends
Biotechnol: 18:160 – 167
Metzger, P and C. Largeau. 2005.
Botrycoccus Braunii: A Rich Source
for Hydrocarbons and Related Ether
Lipids. Appl Microbiol Biotechnol. 66:
486 – 496
Moheimani NR, Borowitzka MA, Andreas I,
Sing SF. 2013. Growth of algae and
their composition. J Appl Phycol. 5:
265-284. doi: 10.1007/978-94-007-
5479-9_16.
Moheimani N.R, Cord-Ruwisch R, Raes E,
Borowitzka M.A. 2013. Non-destructive
oil extraction from Botryococcus
braunii (Chlorophyta). J Appl Phycol
2013;25:1653–61.
https://doi.org/10.1007/s10811-013-
0012-9.
Mohsenpour, S.F., Hennige, S.,Willoughby,
N., Adeloye, A., Gutierrez, T., 2021.
Integrating micro-algae into wastewater
treatment: a review. Sci. Total Environ.
https://doi.org/10.1016/j.scitotenv.2020.
142168.
Olaizola, M., T. Bridges, S. Flores, L.
Griswold, J. Morency, T. Nakamura.
2004. Mikroalgae Removal of CO2
from Flue Gas: CO Capture from a
Coal Combuster. Biotech. Bioproc. Eng
8: 360-367.s
Pernet F, Tremblay R, Demers D, Roussy M.
2003. Variation of lipid class and fatty
acid composition of Chaetoceros
muelleri and Isochrysis sp. Grown in a
semicontinuous system. Aquaculture
221:393-406.
Prince, R. C dan S. K Haroon. 2005. The
Photobiological Production of
Hydrogen Potential Efficiency and
Effectiveness as A Renewable Fuel.
Crit. Rev. Microbiol 31: 1931
Schenk, P.M, R. Skye., R.T. Hall, E.
Stephens, U.C. Max, J.H. Mussgnug, C.
Posten, O. Kruse, and B. Hankamer.
2008. Second Generation Biofuel:
High Efficiency Microalgae for
Biodiesel Production. J. Bioenergi, 1:
20- 43.
Spolaore, P., C. Joannis Cassan., E. Duran dan
A. Isambert. 2006. Commercial
Applications of Microalgae. J. Biosci
Bioeng. 101: 87-96
Walter, TL., S. Purto., D. K. Becker., dan C.
Collet. 2005. Microalgae as Bioreactor.
Plant Cell Rep.,24:629–641.
Widianingsih, Hartati R, Hendrawati A,
Yudirti E, Iriani VR. 2011. Pengaruh
pengurangan konsentrasi nutrien
fosfat dan nitrat terhadap kandungan
lipid total Nannoclhoropsis oculata.
IJMS. 16(1):24-29.doi.org/10.14710/
ik.ijms.16.1.24-29
