IMPLEMENTATION OF THE C4.5 DECISION TREE ALGORITHM ON THE NUTRITIONAL STATUS OF TODDLERS (CASE STUDY: POSYANDU "ABC”)

Authors

  • Nur Ali Farabi
  • Arief Satriansyah
  • Dwi Wiratmoko

Keywords:

Posyandu, Malnutrition, News, Prevention, Countermeasures, DecisionTree, AlgorithmC4.5.

Abstract

Malnutrition is a serious health problem in children under five in Indonesia. Posyandu (Integrated Service Post) has an important role in the prevention and control of malnutrition. This study aims to evaluate the role of Posyandu in the prevention and management of malnutrition in toddlers. Posyandu can also make referrals to higher health facilities if cases of malnutrition are found. The purpose of this study will be to test the nutritional status classification model of toddlers at Posyandu "ABC" by utilizing data mining techniques using the Decision Tree method of the C4.5 Algorithm. The results of the study show that the criteria of Age, Weight, Height and Parental Nutrition Knowledge play a role in monitoring the growth and development of toddlers, early detection of malnutrition, and providing nutrition education to mothers under five. Thus, the results of this study can be one of the strategies in preventing and overcoming malnutrition status in toddlers in Indonesia.

Downloads

Download data is not yet available.

References

M. Widyastuti, A. G. Fepdiani Simanjuntak, D. Hartama, A. P. Windarto, and A. Wanto,“ClassificationModelC.45onDeterminingtheQualityofCustumer.

Service in Bank BTN Pematangsiantar Branch,” J. Phys. Conf. Ser., vol. 1255, no. 012002, pp. 1–6, 2019, doi: 10.1088/1742-6596/1255/1/012002.

R. W. Sari, A. Wanto, and A. P. Windarto, “Implementasi Rapidminer Dengan Metode K-Means (Study Kasus: Imunisasi Campak Pada Balita Berdasarkan Provinsi),” KOMIK (Konferensi Nas. Teknol.Inf. dan Komputer), vol.2, no.1,pp. 224–230, 2018, doi: 10.30865/komik.v2i1.930

P. Alkhairiand A. P. Windarto, “PenerapanK-MeansClusterPadaDaerahPotensi Pertanian Karet Produktif di Sumatera Utara,” Semin. Nas. Teknol.Komput.Sains,pp.762–767,2019.

Han, J. Kamber, M. 2001. Data Mining: Concepts and Technique. San Fransisco: Morgan Kaufman PublisherW. Katrina, H. J. Damanik, F. Parhusip, D. Hartama, A. P. Windarto, and A. Wanto, “C.45 Classification Rules Model for Determining Students Level of Understandingof the Subject,” J. Phys. Conf.Ser., vol. 1255, no. 012005,pp.1–7, 2019, doi: 10.1088/1742-6596/1255/1/012005

A.Raditya. 2015. Implementasi Data Mining Classification untuk Mencari Pola Prediksi Hujan dengan Menggunakan Algoritma C4.5.

D. H. Kamagi and S. Hansun, “Implementasi Data Mining dengan Algoritma C4 . 5 untuk Memprediksi Tingkat Kelulusan Mahasiswa,” Ultim. Vol. VI, No. 1 | Juni 2014, vol. VI, no. 1, pp. 15–20, 2014.

A. Nurzahputra and M. A. Muslim, “Peningkatan Akurasi Pada Algoritma C4.5 Menggunakan Adaboost Untuk Meminimalkan Resiko Kredit,” Pros. SNATIF ke- 4, pp. 243–247, 2017.

Downloads

Published

2025-05-05

How to Cite

Nur Ali Farabi, Arief Satriansyah, & Dwi Wiratmoko. (2025). IMPLEMENTATION OF THE C4.5 DECISION TREE ALGORITHM ON THE NUTRITIONAL STATUS OF TODDLERS (CASE STUDY: POSYANDU "ABC”). Akrab Juara : Jurnal Ilmu-Ilmu Sosial, 10(2), 342–349. Retrieved from https://akrabjuara.com/index.php/akrabjuara/article/view/2364

Issue

Section

Articles