C4.5 ALGORITHM OPTIMIZATION WITH BACKWARD ELIMINATION SELECTION FEATURE FOR CREDITWORTHINESS ASSESSMENT
Keywords:
C4.5, backward elimination, confusion matrix, ROC curvaAbstract
Credit is now a trend in society. Credit problems are the history of incorrect use of credit cards. The impact can cause bad credit. If customers do not pay the debt that has been agreed with the bank, they can increase their credit risk. In this study, researchers applied the C4.5 algorithm without optimization and the C4.5 Algorithm with Backward Elimination Feature Selection Optimization to classify creditworthiness status. Researchers used 481 vehicle credit records with "bad" and "good" reviews. The independent variables used in the study were dependent status, age, last education, marital status, occupation, company status, income, employment status, house condition, length of stay and down payment. From the results of the study and testing, the performance of the C4.5 model without backward elimination for creditworthiness assessment provided a truth accuracy level of 91.90% with an area under the curve (AUC) value of 0.915. While the performance of the C4.5 model with backward elimination provided a truth accuracy level of 94.80% with an area under the curve (AUC) value of 0.973. This proves that optimization with backward elimination can improve the performance of the classification method used.
Downloads
References
Agustian, A. A., & Bisri, A. (2019). Data Mining Optimization Using Sample Bootstrapping and Particle Swarm Optimization in the Credit Approval Classification. Indonesian Journal of Artificial Intelligence and Data Mining, 2(1), 18–27. https://doi.org/10.24014/ijaidm.v2i1.6299
Alamanda, D. T., Cahyani, V., Novianti, D. N., Hilyah, A., & Haryono, Z. (2024). Aplikasi Game Theory Dalam Bisnis (Analisis Permainan Menggunakan Permainan). Kab. Sumedang: CV. Mega Press Nusantara.
Alfian, A. B., & Nugroho, A. H. D. (2024). Analisis Sistem Pengendalian Internal Terhadap Efektivitas Pemberian Kredit Kendaraan Bermotor di PT. Indomobil Finance Indonesia Cabang Semarang. Journal of Economic, Bussines and Accounting (COSTING), 7(4), 9071–9084. https://doi.org/10.31539/costing.v7i4.8902
Amrin, A.-, & Pahlevi, O.-. (2022). Implementation of Logistic Regression Classification Algorithm and Support Vector Machine for Credit Eligibility Prediction. Journal of Informatics and Telecommunication Engineering, 5(2), 433–441. https://doi.org/10.31289/jite.v5i2.6220
Amrin, A., Rudianto, R., & Irfiani, E. (2024). Analisis Algoritma Iterative Dichotomiser 3 (ID3) untuk Penilaian Kelayakan Kredit Kendaraan Bermotor. IMTechno: Journal of Industrial Management and Technology, 5(2), 36–40.
Aryanto, R., & Widiatno, A. (2013). Prioritas Alternatif Keputusan Pada Analisis Kredit Motor. Binus Business Review, 4(9), 316–321.
Chern, C.-C., Lei, W.-U., Huang, K.-L., & Chen, S.-Y. (2021). A decision tree classifier for credit assessment problems in big data environments. Information Systems and E-Business Management, 19(1), 363–386. https://doi.org/10.1007/s10257-021-00511-w
Gorunescu, F. (2011). Data Mining: Concepts, Models, and Techniques. Springer.
Huizen, L. M., Ardima, M. B., & Idris, M. (2025). Meningkatkan kinerja SVM: Dampak berbagai teknik seleksi fitur pada akurasi prediksi. AITI: Jurnal Teknologi Informasi, 1–14
Jin, Y., Zhang, W., Wu, X., Liu, Y., & Hu, Z. (2021). A Novel Multi-Stage Ensemble Model with a Hybrid Genetic Algorithm for Credit Scoring on Imbalanced Data. IEEE Access, 9, 143593–143607. https://doi.org/10.1109/ACCESS.2021.3120086
Lasena, M., & Ahmad, S. R. (2023). Sistem Pendukung Keputusan Kelayakan Pemberian Kredit Nasabah Dengan Metode Electre. Bulletin of Information Technology (BIT), 4(2), 232–238. https://doi.org/10.47065/bit.v4i2.690
Novichasari, S. I. (2021). Peningkatan Akurasi Kelayakan Kredit Menggunakan Particle Swarm Optimization. Jurnal Multimatrix, 3(1), 86–90. https://jurnal.unw.ac.id/index.php/mm/article/view/1533%0Ahttps://jurnal.unw.ac.id/index.php/mm/article/view/1533/992
Oktafriani, Y., Firmansyah, G., Tjahjono, B., & Widodo, A. M. (2023). Analysis of Data Mining Applications for Determining Credit Eligibility Using Classification Algorithms C4.5, Naïve Bayes, K-NN, and Random Forest. Asian Journal of Social and Humanities, 1(12), 1139–1158. https://doi.org/10.59888/ajosh.v1i12.119
Putry, J. B. E., Sasongko, A. T., & Hadikristanto, W. (2024). Optimasi Decision Tree Menggunakan Particle Swarm Optimization (PSO) pada Risiko Kredit KMG Bank DKI. MALCOM: Indonesian Journal of Machine Learning and Computer Science, 4(4), 1403–1410. https://doi.org/10.57152/malcom.v4i4.1521
Racmatl, R., & Likliwati, R. D. (2019). Optimasi k-Nearest Neighbor Dengan Particle Swarm Optimization Pada Klasifikasi Nasabah Kredit Kendaraan. Jurnal JTRISTE, 6(1), 9–16. https://jurnal.kharisma.ac.id/jtriste/article/view/89
Religia, Y., Nugroho, A., & Hadikristanto, W. (2021). Analisis Perbandingan Algoritma Optimasi pada Random Forest untuk Klasifikasi Data Bank Marketing. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 5(1), 187–192. https://doi.org/10.29207/resti.v5i1.2813
Song, Y. (2023). Enterprise Credit Rating Prediction Model Based on Data Mining Algorithm. In J. C. Hung, J.-W. Chang, & Y. Pei (Eds.), Innovative Computing Vol 1 - Emerging Topics in Artificial Intelligence (pp. 745–751). Springer Nature Singapore.
Widagda, I. N., & Primantari, A. A. (2025). Penyelesaian Wanprestasi Dalam Perjanjian Kredit Bank Tanpa Agunan Melalui Perspektif Hukum Positif Di Indonesia. JMA: Jurnal Media Akademik, 1-16
Ziemba, P., Becker, J., Becker, A., Radomska-Zalas, A., Pawluk, M., & Wierzba, D. (2021). Credit decision support based on real set of cash loans using integrated machine learning algorithms. Electronics (Switzerland), 10(17), 1–22. https://doi.org/10.3390/electronics10172099
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.