ANALISIS SENTIMEN ARTIKEL BERITA TOKOH SEPAK BOLA DUNIA MENGGUNAKAN ALGORITMA SUPPORT VECTOR MACHINE DAN NAIVE BAYES BERBASIS PARTICLE SWARM OPTIMIZATION
Keywords:
Sentiment Analysis, Mining Text, Classification, Naive Bayes, Support Vector Machine, Particle Swarm OptimizationAbstract
Information about the actual news that occurs every day, or what happens every minute that can now be easily obtained such as general online news sites containing various actual information, as well as news sites that have special rubrics, for example news about politics, economics, education , entertainment, sports and so on. by using sentiment analysis by classifying documents with text mining. The algorithm used in this study is Naive Bayes and Support Vector Machine based on Particle Swarm Optimization. The results obtained from testing NB, NB (PSO), SVM and SVM (PSO) data will be compared. SVM (PSO) accuracy has a higher accuracy compared to SVM, NB and NB (PSO). So it can be concluded that the best optimization application in this model is that Support Vector Machine based on Particle Swarm Optimization (PSO) can provide a solution to classification problems in the case of sentiment analysis of world football figures Lionel Messi.
Downloads
References
Amrullah, Ahmad Afief, Ahmad Tantoni, Nahrowi Hamdani, Rahmat Taufik R.L.Bau, Muhammad Rafiqudin Ahsan dan Ema Utami.2016. Review Atas Analisis Sentimen Pada Twitter Sebagai Representasi Opini Publik Terhadap Bakal Calon Pemimpin.
Anjani, D. 2015. Bab II Landasan Teori Text Mining.http://repository.widyatama.ac.id/xmlui/bitstream/handle/123456789/5867/Bab%202.pdf?sequence=9. Yogyakarta : PROSIDING SEMINAR NASIONAL MULTI DISIPLIN ILMU & CALL FOR PAPERS UNISBANK (SENDI_U) KE-2 Tahun 2016 Kajian Multi Disiplin Ilmu dalam Pengembangan IPTEKS untuk Mewujudkan Pembangunan Nasional Semesta Berencana (PNSB) sebagai Upaya Meningkatkan Daya Saing Global ISBN: 978-979-3649-96-2.
Basaria , Abd. Samad Hasan, Burairah Hussina, dan I. Gede Pramudya Anantaa,Junta Zeniarja. 2012. Opinion Mining of Movie Review using Hybrid Method of Support Vector Machine and Particle Swarm Optimization. Malaysia : Procedia Engineering 53 ( 2013 ) 453 – 462 Malaysian Technical Universities Conference on Engineering & Technology 2012, MUCET 2012 Part 4 Information And Communication Technology.
Budiman, Irwan, Toni Prahasto dan Yuni Christyono. 2012.Data Clustering Menggunakan Metodologi CRISP-DM Untuk Pengenalan Pola Proporsi Pelaksanaan Tridharma,ISSN : 1907-5022. Yogyakarta : Seminar Nasional Aplikasi dan Teknologi Informasi 2012 ( SNATI 2012).
Buntoro, Asrofi Ghulam. 2017. Analisis Sentimen Calon Gubernur DKI Jakarta 2017 di Twitter. Jakarta : Integer Journal Vol 1 No 1 Maret 2016:32-41.
Chandani, Vinita, Romi Satria Wahono,dan Purwanto.2015. Komparasi Algoritma Klasifikasi Machine Learning Dan Feature Selection pada Analisis Sentimen Review Film, ISSN 2356-3982.__. Journal of Intelligent Systems, Vol. 1, No. 1, February 2015.
Dhande, Lina L, dan Dr. Girish Patnaik. 2014. Review of Sentiment Analysis using Naive Bayes and Neural Network Classifier, ISSN :2319-8885. India : International Journal of Scientific Engineering and Technology Research Vol. 03 Issue.07 Mei 2014 Page 1110-1113.
