PERBANDINGAN ALGORITMA CART DAN NAÃVE BAYESIAN PADA KASUS DIAGNOSIS PENYAKIT DIABETES
Keywords:
Performance, Diagnosis, AlgorithmAbstract
Diabetes mellitus is a disease that threatens serious health, can cause death and the World Health Organization (WHO) estimates that every 10 seconds there is one diabetes patient who dies of this disease. This makes researchers and practitioners focus their attention on detecting / diagnosing diabetes mellitus and preventing it because this disease can cause complications. The method used in this research is problem identification, data collection, pre-processing stage, classification method, validation and evaluation and conclusion drawing. The algorithm used in this study is CART and Naïve Bayes by using a dataset taken from the UCI Indian Pima database repository which consists of clinical data of patients who detected positive and negative diabetes mellitus. The validation and evaluation methods used are 10-cross validation and confusion. Matrix for precision, recall and F-Measure. The results of calculations that have been done, the results of the accuracy of the CART algorithm are 76.9337% with precision 0.764%, recall 0.769%, and F-Measure 0.765%. While the diabetes dataset tested by the Naïve Bayes algorithm gets an accuracy value of 73.7569% with precision 0.732%, recall 0.738%, and F-Measure 0.734%. From these results it can be concluded that to diagnose diabetes mellitus it is recommended to use the CART algorithm.
Downloads
References
Depkes,R.I. 2009. Profil Kesehatan Indonesia. Jakarta: Depkes RI
Diabetes Care. 2004. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030.
Gorunescu,F. 2011. Data mining Concepts, Models and Techniques. Verlan Berlin Heidelberg: Spinger
Han,J., & Kamber,M. 2006. Data Mining Concepts And Techniques. Verlag Berlin Heidelberg: Spinger
Indri Rahmayuni. 2014. Perbandingan Performansi Algoritma C4.5 dan CART dalam Klasifikasi Data Nilai Mahasiswa Prodi Teknik Komputer Politeknik Negeri Padang.Jurnal TEKNOIF Vol.2 No. 1 April 2014.
Jayalskshmi, T., Santhakumaran, A., “Impact of Prepocessing for diagnosis of diabetes mellitus using artificial neural network,†Machine Learning and Computing (ICMLC). 2010 Second International Conference on, vol., no., pp.109-112,9-11 Feb.2010.
Kemenkes RI.2014.Situasi dan Analisis Diabetes. Jakarta: Kemenkes RI
Komalasari, Wieta B. 2007. Metode Pohon Regresi Untuk Eksplorasi Data Dengan Peubah Yang Banyak Dan Kompleks. Jurnal Infomatika Pertanian Volume 16 No. 1, Juli 2007.
Kundari, Eska Sarti. 2015. Perbandingan Kinerja Metode Naïve Bayes dan C4.5 dalam Pengklasifikasian Penyakit Diabetes Mellitus di Rumah Sakit Kumala Siwi Kudus. SKRIPSI. Universitas Dian Nuswantoro.
Kusrini, & Lutfhi,E. T. 2009. Algoritma Data Mining.Yogyakarta: Andi Offset.
Larose, D. T., 2005. Discovering Knowledge In Data: An Introduction To Data Mining. New Jersey: Wiley-nterscience.
Lesmana,I Putu Dody. 2012. Perbandingan Kinerja Decisiion Tree J48 dan ID3 dalam Pengklasifikasian Diagnosis Penyakit Diabetes Mellitus. Jurnal Teknologi dan Informatika Vol. 2 No. 2 Mei 2012.
Nurhidayat, Farid. 2013. Penentuan Besar Akurasi Metode Klasifikasi Menggunakan Algoritma C4.5 Berbasis Particle Swarm Optimatization Pada Prediksi Penyakit Diabetes. Tugas Akhir. Fakultas Ilmu Komputer Universitas Dian Nuswantoro Semarang.
Nuriyah. 2013. Perbandingan Metode chi-square automstic interaction detection (chaid) dan classification and regression tree (cart) Dalam Menentukan Klasifikasi Alumni UIN Sunan Kalijaga Berdasarkan Masa Studi. SKRIPSI. Fakultas Sains dan Teknologi Universitas Islam Negeri Sunan Kalijaga.
Patil, B.M., Joshi,R.C., Toshniwal,D. 2010. Assosiation rule for classification of type 2 diabetic patients. Machine Learning And Computing (ICMLC),pp.330-334
Pima Indians Diabetes Dataset, UCI Machine Learning Repository , diambil dari http://archive.ics.edu/ml/datasets/Pima+Indians+Diabetes. Diakses 29 Agustus 2016
Prasetyo, Eko. 2012. Data Mining Konsep dan Aplikasi Menggunakan Matlab. Yogyakarta: Penerbit Andi
RISKESDAS, Badan Penelitian dan Pengembangan Kesehatan Kementrian Kesehatan RI. 2013.
Timofeev, Roman. 2004. Classification and Regression Trees (CART) Theory and Aplications.Humboldt University: Berlin
Sangadji.E.M dan Sopiah. 2010. Metodologi Penelitian. Yogyakarta : Andi
Sulianta,F , dan Juju,D. 2010. Data Mining Meramalkan Bisnis Perusahaan. Jakarta: Elex Media Komputindo.
Susanto, S., dan Suryadi, D.. 2010. Pengantar Data Mining. Yogyakarta: Andi
Triajianto, J., Purwananto, Y., dan Soelaiman, R. 2013. Implementasi Sistem Klasifikasi Fuzzy Berbasis Optimasi Koloni Semut untuk Diagnosa Penyakit Diabetes. Jurnal Teknik Pomits Vol. 2, No. 1 (2013) ISSN : 2337 – 3539 (2301- 9271 Print).
Trisnawati, Setyorogo. 2013. Faktor Risiko Kejadian Diabetes Melitus Tipe II Di Puskesmas Kecamatan Cengkareng Jakarta Barat Tahun 2012. Jurnal Ilmiah Kesehatan, 5 (1); Januari 2013
WEKA, Machine Learning Group at University of Waikato,diambil dari http://www.cs.waikato.ac.nz/ml/weka/ . Diakses 29 Agustus 2016.
Written, I. H., Frank, E., & Hall, M.A. 2011. Data Mining Practical Machine. Burlington: Elsevie.
